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Periodical cicadas are well known for their prime-numbered life
cycles (17 and 13 years) and their mass periodical emergences. The
origination and persistence of prime-numbered cycles are ex-
plained by the hybridization hypothesis on the basis of their lower
likelihood of hybridization with other cycles. Recently, we showed
by using an integer-based numerical model that prime-numbered
cycles are indeed selected for among 10- to 20-year cycles. Here, we
develop a real-number-based model to investigate the factors
affecting the selection of prime-numbered cycles. We include an
Allee effect in our model, such that a critical population size is set
as an extinction threshold. We compare the real-number models
with and without the Allee effect. The results show that in the
presence of an Allee effect, prime-numbered life cycles are most
likely to persist and to be selected under a wide range of extinction
thresholds.

extinction thresholds � hybridization � Magicicada � predator satiation

True periodicity, involving synchronized adult emergences,
fixed life cycle lengths, and intervals between emergences

with no adults present, is rare among insects (1). The majority
of periodical insects have life cycles of 2 years with geographi-
cally separated populations appearing in even and odd years,
respectively. The most famous periodical insects, the periodical
cicadas (Magicicada spp.) of eastern North America, have the
most extreme periodical life cycles known (1–6). The seven
described species of 13- and 17-year periodical cicadas are
divided into a complex mosaic of 15 largely parapatric, regional
‘‘broods’’ on different emergence schedules (1–6). Enduring
questions about these insects are why are there only two life
cycles and why are these both prime numbers.

Several authors have proposed a hybridization hypothesis for
the evolution of Magicicada life cycles that involves ‘‘weeding
out’’ all but the long-length prime-numbered cycles from a
spectrum of periodical cycles (7, 8). In the various models that
have been presented, coemergences of different life cycles lead
to hybridization and production of offspring with altered life
cycles that remove them from the mating population and thereby
introduce a fitness cost. Thus, brood pairs that are more likely
to coemerge stand a greater chance of decline and extinction.
The fact that the two extant Magicicada life cycles (13 or 17
years) are prime-numbered means that where broods of different
life cycles are adjacent, coemergences of adults occur rarely
(only once every 221 years). In Magicicada, the fitness costs of
hybridization may be elevated by predation; periodical cicadas
suffer heavy mortality at low population densities because they
rely on mass numbers and a strategy of ‘‘predator satiation’’ for
survival (9, 10). In this article, we examine the relationship
between individual fitness and population density [or Allee
effect (11–13)] in the evolution of Magicicada periodicity.

In our previous studies using a simple numerical model of
emergence and hybridization in periodical cicadas (14), we show
that the cost of hybridization causes prime-numbered cycles to
persist longer than other potential life cycles. These earlier

models assume implicitly a kind of Allee effect by rounding
population sizes downward, which has disproportionately large
effects on small populations (14). In this article, we present a
simulation model with an explicit Allee effect in the form of an
extinction threshold, or population density below which a brood
becomes extinct. We use this model to investigate the potential
strength of an Allee effect in the evolution of Magicicada
periodicity.

Model
We built a deterministic discrete model of population dynamics
starting with 11 pure broods of 10–20-year genetically deter-
mined life cycles (14). All population sizes were measured as real
numbers with decimals (double precision). We kept track of the
population sizes of all broods/hybrids including birth year with
juvenile (Nl,t) and adult stages (NA). Rates of hybridization
among different broods/genotypes were assumed to be propor-
tional to the relative population sizes of coemerging broods (15).

We applied an Allee effect to periodical cicada population
dynamics (8, 11–13) in the following manner. We set a critical
population size Nc, below which the population will become
extinct immediately. As a control, we set Nc � 0 (without the
Allee effect). To test the sensitivity of this extinction threshold
Nc, we varied the critical population sizes, such that Nc � 0, 10,
20, . . . , 300 (step � 10).

To avoid an initial advantage to any specific cycle, the starting
conditions of our model included identical population sizes for
all broods of 1,000 first-instar juveniles. We also tested the
sensitivity of the initial conditions with various equal and
unequal population sizes. In all simulations, we explored the
population dynamics of cicadas from 11 pure broods with cycles
ranging from 10 to 20 years.

Results
Selection for prime-numbered cycles appears only under the
Allee effect (Fig. 1). With the Allee effect (Nc � 100), only a few
prime-numbered cycles (17, 13, and 19) survive (Fig. 1 A), and
their identities depend on the initial model parameters. How-
ever, without the Allee effect (control: Nc � 0), the 16-year cycle
increases most, but all cycles survive, and some increase (Fig.
1B). We also varied the initial population sizes from 1,000 to
11,000 individuals per cycle. When population sizes are small
(�1,800 individuals), prime-numbered life cycles are favored; at
larger population sizes, non-prime-numbered life cycles may also
persist.

Parameter sensitivity analysis shows that survival advantages
for the prime-numbered cycles appear under the Allee effect
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(Fig. 2). The phase planes show the survival cycles at a thousand
years for the two parameters: juvenile survival rate S and adult
emergence rate E with extinction threshold Nc � 100 (Fig. 2 A)
and 300 (Fig. 2B). Here, all of the broods have gone extinct under
a combination of low juvenile survival rates and low adult
emergence rates, whereas all survive when these parameters are
high. Prime-numbered cycles survive at the boundaries (edge) of
extinction: a single cycle at the very edge and two or more far
inside with an increasing number of survival cycles (Fig. 2). The
difference between Nc � 100 and 300 is rather quantitative. The
phase plane for Nc � 300 is more complicated. Among non-
prime-numbered cycles, only 14-year cycles appear near the edge
of extinction (black in Fig. 2B). However, no non-prime-
numbered cycles appear at the edge of extinction when the
critical population size, Nc, is set to 100 (Fig. 2 A).

Without the Allee effect, we find no strict extinction in the
phase plane at 1,000 years because hybrids suffer no costs (Fig.
3). Therefore, we evaluate the growth rate of populations as
follows. If the populations at 1,000 years are �1,000 individuals,
they are considered ‘‘increasing,’’ whereas if they are �1,000,
they will be ‘‘decreasing.’’ The positive or negative growth is
shown in the dark or light gray areas, respectively, in Fig. 3, where
the total population size is increasing or decreasing from the

initial 1,000 individuals. At the increasing/decreasing boundary,
we find an extremely narrow area where only one to three
prime-numbered cycles increase, whereas the rest of the cycles
decrease more or less (note that these colors are different from
those of Fig. 2, which indicate the survival of only one or two
cycles). The increasing/decreasing boundaries are similar among
all broods (Fig. 3). Thus, the advantage of prime-numbered
cycles does not appear when the Allee effect is absent.

The exact tradeoff between juvenile survival rate S and adult
emergence rate E is seen in the straight border of extinction (Fig.
3). The overall growth rates of populations are unity along the
border. This survival border is extended largely when there is an
Allee effect (Fig. 2). The individual phase plains for each cycle
with Nc � 100 indicate that the survival areas are very large for
all of the prime-numbered cycles, suggesting the advantage of
prime-numbered cycles (Fig. 4).

The advantage of prime-numbered cycles appears as long as
there is an Allee effect, irrespective of the extinction thresholds
(Fig. 5). We varied the extinction level from 0 (without the Allee
effects) and 10, 20, . . . , to 300 (step � 10; with the Allee effects).
When the emergence rate is low (E � 0.24), the survival of only
one prime-numbered cycle (either 17 or 19) is seen for Nc �
20–250. When the emergence rate is increased slightly (E � 0.26,

A
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Fig. 1. Temporal dynamics of periodical cicadas starting with 11 pure broods at 10- to 20-year cycles. (A) Real-number model with the Allee effect (Nc � 100).
All but 13-, 17-, and 19-year cycles are extinct at an early stage. The order of population sizes at the end (100 years) is: 17 � 13 � 19. (B) Control: real-number
model without the Allee effect (Nc � 0). Parameters are S � 0.95 and E � 0.5. All survive until the end (100 years), and the order of population sizes is 16 � 15 �
18 � 17 � 19 � 14 � 20   13 � 12 � 11 � 10.
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0.27), the survival of two to three prime-numbered cycles appear
in a wide rage of critical population sizes (Nc � 40–300; Fig. 5
B and C). When the emergence rate is increased further (E �
0.3), many cycles survive at different levels of Nc (Fig. 5D), but
in general, prime-numbered cycles still have an advantage.

Discussion
The hybridization hypothesis (7, 8) must explain two evolution-
ary processes: (i) the fixation of perfectly synchronous periodical
life cycles, and (ii) the selection of prime-numbered 17- and
13-year cycles. Our model addresses the processes that select for
prime-numbered life cycles, or the second part of the hybrid-
ization hypothesis. To address the first part of the hypothesis and
to resolve conflicts between this hypothesis and other hypotheses

for the evolution of periodical cicada life cycles (5, 6, 16, 17),
studies are needed on the genetic and environmental basis of
periodicity.

Our results suggest that an extinction threshold Allee effect
could facilitate the selection of prime-numbered life cycles. The
various parameters in our model seem to have little effect on the
eventual outcome; under a wide range of extinction thresholds,
non-prime life cycles are unlikely to persist (Figs. 1–5). In
addition, the numerical advantages of prime-numbered cycles
appear only when an Allee effect is at work (Fig. 3). These results
suggest that the mechanism of prime-number selection is ex-
tremely stable under various environmental settings. The exact
form of the Allee effect may be unimportant to the general
results; this model has an explicit Allee effect, whereas our
previous model had an implicit but untested Allee effect (14).
Both models favored prime-numbered cycles after a process of
coemergence, hybridization, and extinction of non-prime-
numbered cycles.

In the current model (but not our previous model), we assume
constant clutch size (14). This simplification is important to
elucidate the mechanisms of the selection process because the
relationships among parameters and the outcomes become
straightforward. The important finding is that the areas of
survival of prime-numbered cycles appear only when any sur-
vival parameter is varied close to the extinction boundary (Fig.
2) and that this phenomenon is caused directly by the Allee
effect.

The most unrealistic aspect of our model is that it presupposes
geographic overlap of periodical life cycles; Among the modern-
day periodical cicada broods, such life cycle overlap is virtually
nonexistent (1). In addition, our model postulates the existence
of fixed life cycles with no plasticity. Although periodical cicada
life cycles are genetically determined, plasticity has been impli-
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Fig. 2. Phase planes of 1,000-year survivals for juvenile survival rate S and
adult emergence rate E among 11 pure broods of 10- to 20-year cycles with the
Allee effect. The extinction thresholds are set as: Nc � 100 (A) and Nc � 300 (B).
One or two cycles only (red: 11 only; green: 13 only; black: 14 only; blue: 17
only; pink: 19 only; beige: 11 and 13; brown: 13 and 17; yellow: 17 and 19),
three or more cycles (gray) and all extinction (white) are shown. The various
cycles (gray) include hybrids.
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Fig. 3. Phase planes of population sizes (relative to the initial population
sizes) of 1,000-year survivals for juvenile survival rates S and adult emergence
rate E among 11 pure broods of 10- to 20-year cycles without the Allee effect
(control; Nc � 0). The population sizes are categorized as increasing or
decreasing compared with the corresponding initial population sizes (N0 �
1,000). The populations are shown as: three or more cycles increasing (dark
gray); shown prime numbers only increasing with the rest decreasing (green:
13 only; blue: 17 only; pink: 19 only; yellow: 17 and 19); and all decreasing
(light gray).
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cated in allowing periodical cicadas to switch life cycles (6,
16–18), and the phenomenon of off-cycle emergences, or ‘‘strag-
gling’’ is also likely a manifestation of life cycle plasticity.
Periodical cicada life cycle plasticity may itself be subject to
evolutionary change (10), and we know little about the genetics
of life cycle plasticity; thus, there is no simple way to include it
in our models.

Another unrealistic aspect of our model is that the extinction
threshold is difficult to determine empirically and is modeled as
a sharp boundary condition, whereas in reality, we would expect
Allee effects to operate more gradually, such that small popu-
lation sizes would be at a higher risk of extinction than larger
ones (11–13). Thus, we would expect some gradual shift in the
probability and intensity of the Allee effect as the population
sizes approached the extinction thresholds, unlike the sharp
threshold of the current model. The Allee effect in our previous
‘‘round-down’’ integer model is more gradual (14). The round-
down integer model produces relatively simple survival patterns
(Fig. 2 in ref. 14), whereas the current model produces much
more complicated patterns (Figs. 2 and 3). Yet the general
results of both models are the same: Allee effects resulting from
predator satiation seem to favor prime-numbered life cycles. A
numerical demonstration that Allee effects can promote the
maintenance of long, prime-numbered periodical life cycles
confirms our earlier, intuitive understanding of how periodical

life cycles are shaped by the interactions of predators and
population densities (3, 5, 7–10).

Model Specifications
The model consists of two key parameters: juvenile survival rate
S and adult emergence rate E. We assume that juvenile survival
(mortality) rate S (1� S) per year is constant (0 � S � 1).
Successful adult emergence rate E (0 � E � 1) is kept constant,
assuming emergence failure is independent of life cycle length.
To make the model simple, the clutch size C is also set to be
constant (C � 25). For simplicity, we assume that the life cycle
follows a single-locus Mendelian inheritance system with shorter
cycle dominance, such that genotype [i, j] corresponds to phe-
notype i (years) if i � j. We do not know the genetics of periodical
cicada life cycles, but note that the current simulation model is
fairly neutral to what kind of genetic system we employ. For
genotype [i, j] of a given birth year, the juvenile population size
of a brood at time t (Nl, t) follows the equation:

Nl,t�i, j� � S � Nl,t�1�i, j�. [1]

Adult brood size NA,t (only appear in emergence year) is

NA,t�i, j� � E � Nl,t�i, j�. [2]

The offspring (juvenile) brood size between [i, j] and [m, n] is:
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Fig. 4. Individual phase planes of 1,000-year survivals (Fig. 2A) for each of 11
pure broods of 10- to 20-year cycles (numbers shown) with the Allee effect.
The extinction thresholds are set as Nc � 100. The two parameters are juvenile
survival rates S (y axis: range � 0.91–0.97) and adult emergence rate E (x axis:
range: 0.13–0.35). The survival areas are larger in 13- and 17-year cycles,
followed by 11- and 19-year cycles. Those of non-prime-numbered cycles are
all smaller.
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Fig. 5. Surviving cycles among 11 pure broods at 10- to 20-year cycles with
different levels of the Allee effect, where the extinction threshold is varied,
such that Nc � 0 (no Allee effect), 10, 20, . . . , 300 (step � 10). The gray cells
are surviving cycles. E � 0.24 (A), 0.26 (B), 0.27 (C), and 0.3 (D). Other param-
eters are S � 0.944, and C � 25. A–D correspond with the points along line S �
0.944 in the phase plane of Fig. 2A.
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Num. offspring �
1
2

NA,t� i , j� � F�NA,t�m , n�� � C [3]

where F is the frequency of the target brood, such that

F�NA�m, n�� �
NA�m, n�

¥NA
[4]

where ¥NA is the sum of the population sizes of all coemergent
adults for a given year. The genotypes of hybrid offspring
between broods [i, j] and [m, n] include four possibilities: [i, m],
[i, n], [j, m], and [j, n]. Thus, the offspring brood size of each

genotype is determined for the sum of Eq. 3. For example, the
offspring brood size of genotype [i, m] follows:

Nl,t�i, m� � �
x

�
z

�1
2

NA,t�i, x� � F�NA,t�m, z�� � C� [5]

The other genotypes are handled in similar fashion.
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